The acceleration of an electron at a moment in a magentic field $\vec B\, = \,2\hat i + 3\hat j + 4\hat k$ is $\vec a\, = \,x\hat i - 2\hat j + \hat k$. The value of $x$ is

  • A

    $0.5$

  • B

    $1$

  • C

    $2.5$

  • D

    $1.5$

Similar Questions

A proton and an alpha particle both enter a region of uniform magnetic field $B,$ moving at right angles to the field $B.$ If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is $1\,\, MeV,$ the energy acquired by the alpha particle will be......$MeV$

  • [AIPMT 2015]

An ionized gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the $+x$ direction and a magnetic field along the $+z$ direction, then

  • [IIT 2000]

 A charged particle (electron or proton) is introduced at the origin $(x=0, y=0, z=0)$ with a given initial velocity $\overrightarrow{\mathrm{v}}$. A uniform electric field $\overrightarrow{\mathrm{E}}$ and magnetic field $\vec{B}$ are given in columns $1,2$ and $3$ , respectively. The quantities $E_0, B_0$ are positive in magnitude.

column $I$

column $II$ column $III$
$(I)$ Electron with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(i)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0^2 \hat{\mathrm{Z}}$ $(P)$ $\overrightarrow{\mathrm{B}}=-\mathrm{B}_0 \hat{\mathrm{x}}$
$(II)$ Electron with $\overrightarrow{\mathrm{v}}=\frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{y}}$ $(ii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{y}}$ $(Q)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{x}}$
$(III)$ Proton with $\overrightarrow{\mathrm{v}}=0$ $(iii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{x}}$ $(R)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{y}}$
$(IV)$ Proton with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(iv)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{x}}$ $(S)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{z}}$

($1$) In which case will the particle move in a straight line with constant velocity?

$[A] (II) (iii) (S)$    $[B] (IV) (i) (S)$   $[C] (III) (ii) (R)$   $[D] (III) (iii) (P)$

($2$) In which case will the particle describe a helical path with axis along the positive $z$ direction?

$[A] (II) (ii) (R)$   $[B] (IV) (ii) (R)$  $[C] (IV) (i) (S)$   $[D] (III) (iii)(P)$

($3$)  In which case would be particle move in a straight line along the negative direction of y-axis (i.e., more along $-\hat{y}$ )?

$[A] (IV) (ii) (S)$   $[B] (III) (ii) (P)$   $[C]$ (II) (iii) $(Q)$   $[D] (III) (ii) (R)$

  • [IIT 2017]

Two charged particles, having same kinetic energy, are allowed to pass through a uniform magnetic field perpendicular to the direction of motion. If the ratio of radii of their circular paths is $6: 5$ and their respective masses ratio is $9: 4$. Then, the ratio of their charges will be.

  • [JEE MAIN 2022]

In a region, steady and uniform electric and magnetic fields are present. These two fields are parallel to each other. A charged particle is released from rest in this region. The path of the particle will be a

  • [AIEEE 2006]